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A B S T R A C T   

The identification of photobleaching steps in single molecule fluorescence imaging is a well-established pro
cedure for analysing the stoichiometries of molecular complexes. Nonetheless, the method is challenging with 
protein fluorophores because of the high levels of noise, rapid bleaching and highly variable signal intensities, all 
of which complicate methods based on statistical analyses of intensities to identify bleaching steps. It has recently 
been shown that deep learning by convolutional neural networks can yield an accurate analysis with a relatively 
short computational time. We describe here an improved use of such an approach that detects bleaching events 
even in the first time point of observation, and we have included this within an integrated software package 
incorporating fluorescence spot detection, colocalisation, tracking, FRET and photobleaching step analyses of 
single molecules or complexes. This package, known as FluoroTensor, is written in Python with a self- 
explanatory user interface.   

1. Introduction 

Single molecule methods provide a potent approach to examine 
macromolecular complexes. In particular, using total internal reflection 
fluorescence (TIRF) microscopy to visualize fluorophores, one can 
determine whether different specific molecules are present concurrently 
in a complex, and measure their stoichiometries, rates of association and 
dissociation, rates of conformational transitions and rates of diffusion in 
two dimensions [1–4]. The measurement of exact stoichiometries is a 
particular strength of the method, since they can be inferred by identi
fying successive steps in the stochastic photobleaching of individual 
molecules in a complex. Photobleaching has been used very widely to 
examine, for example, the numbers of subunits in membrane-bound 
protein complexes in prokaryotic and eukaryotic cells, the number of 
RNA or protein molecules in RNA splicing complexes and the numbers of 
molecules of a ligand bound to multi-subunit proteins [2,5–13]. 

The photobleaching steps of small organic dyes, such as are 
commonly used for labeling macromolecules, can often be assigned 

fairly easily by eye [2,14]. However, protein fluorophores such as 
mEGFP or mCherry have lower rates of emission, and so the signal/noise 
ratio is less favourable. Nonetheless, unassisted assignments can be 
made [11]. Assignment by eye has three disadvantages: it is subjective, 
and different observers may make different assignments; it is slow, 
which is of especial importance when the statistics require hundreds or 
thousands of traces to be analysed from each experiment; and it is often 
difficult to make assignments because observers look for plateaus on 
either side of a step and may not be able to judge whether, for example, 
there has been bleaching within the first frame or two of the recording or 
whether two events have taken place simultaneously or in close 
succession. 

Several alternatives to visual inspection have been developed. One 
alternative is to measure the intensity of fluorescence from the single 
particles or spots prior to photobleaching, and divide this by the in
tensity of an individual (unitary) bleaching step. A number of methods 
have been developed to measure the unitary step, including a pairwise- 
difference distribution function [1], an iterative search for statistically 
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significant change points and a Gaussian fit to the distribution of step 
heights [15,16], and the use of the last step in a bleaching curve to 
measure the statistical parameters of a step and then use of Bayesian 
methods to find models that best fit the observed curves [17]. A related 
method is the use of purified fluorescent protein to provide the single 
step data, and comparison of these with step spacings derived by 
edge-preserving filters and Fourier analysis [18] These methods are 
most appropriate where the step size is roughly constant, or where the 
numbers of fluorophores in each spot are so high that any variation in 
step size can be assumed to be averaged [17]. However, the absorption 
of excitation light depends strongly on the orientation of the molecular 
dipole; dipoles aligned in the direction of propagation of the field 
experience a field only around 10% of that experienced by dipoles 
perpendicular to the surface, and the rate of emission will be corre
spondingly reduced [19]. Protein fluorophores on complexes that have 
been captured on a surface may have restricted orientations, and so the 
rate of emission and thus the magnitude of bleaching steps may show 
very wide variation among molecules [19] and cannot be relied upon to 
reveal the numbers of molecules in a complex. 

An alternative approach that is initially less dependent on knowledge 
of the unit step size is to model the bleaching time course by identifying 
the plateaus, or states, that flank the steps. An advantage of defining 
plateaus is that blinking or reactivation of fluorophores after bleaching 
does not affect the number of steps identified. Plateaus have been 
identified by hidden Markov models [20] or by measuring the mean and 
standard deviation for short segments of the curve, followed by iterative 
steps in which the segment was expanded [21]. Recursive binary seg
mentation has also been applied, with Student’s t or other statistical 
tests being used to maximise the difference in the means between the 
halves. In one recent method, this was followed by k-means clustering of 
segments, and then the use of a Viterbi algorithm to determine the most 
probable sequence of states [22]. These methods still required the am
plitudes of the steps to be relatively consistent, and they perform better 
with increasing numbers of data points in each plateau. We have used a 
related method involving a Bayesian step point detector, requiring only 
a minimum but still arbitrary step height [5,9,10]. A serious limitation 
with all these methods is that bleaching is stochastic, i.e., the probability 
is the same for every photon absorbed. Thus, more molecules will bleach 
in the first time-frame than in any other, but these will be missed in any 
method based on detecting statistical plateaus. Moreover, it is possible 
that all the methods summarised above will tend to lose molecules that 
bleach very rapidly or that have very small step heights, implying that 
there might be inadvertent selection of molecules with a restricted range 
of dipole orientations. 

Deep learning could bypass some of the limitations or assumptions 
required in most of the above methods, if the training set were to include 
stochastic bleaching events and appropriately distributed step sizes. A 
program incorporating convolutional neural networks has been reported 
that performed well on samples labelled with dye or protein fluo
rophores, and reduced the time required for processing by two orders of 
magnitude [23]. However, in this case each state of the dataset used for 
training and testing included at least five time points, which would 
compromise its ability to detect bleaching in the first frame or very close 
frames. We describe a similar program here that enables these events to 
be detected accurately. Moreover, bleaching steps can be detected even 
with a signal/noise ratio as low as 1.1, when an accuracy of 75% was 
achieved. We have incorporated this programme into an integrated 
package for the detection of spots, colocalization, step measurement and 
downstream analysis, FRET and 2D tracking. We anticipate that this 
package will be useful in a wide range of single molecule experiments. 

2. Methods 

2.1. Image processing 

The images acquired from the microscope were initially enhanced by 

summing the first 20% of frames for each channel to improve the signal- 
to-noise ratio of fluorescent foci. Additionally, the maximum projection 
was taken also to avoid missing foci from fluorophores that bleach 
rapidly. These projections were combined together and enhanced. Two 
alternative enhancement techniques were used. One is described in 
Supplementary Figures 1 and 2; the other is a wavelet transform. The 
correlation of the wavelet and image was computed for every pixel such 
that the output image is zero for all regions apart from fluorescent foci 
where the overlap integral was high. 

2.2. Detection of fluorescent Foci 

Fluorescent foci (spots) were detected in a four-step algorithm 
involving a number of thresholds; the steps are shown in Supplementary 
Figure 3. The enhanced image was split into a grid of 8 × 8 pixel boxes. 
Each potential spot was compared with a precomputed kernel to discard 
aberrant bright regions such as noise or dead pixels for computational 
efficiency. The remaining foci are then fitted with Gaussians and kept or 
rejected based on fitting criteria such as width, eccentricity, and 
residual. 

2.3. Correcting for chromatic aberration 

To maintain focus when switching from 640 nm excitation to 488 nm 
excitation, the stage controller compensates in the z axis. This very 
minor change in z height between the channels, in tandem with lateral 
and spherical aberration, results in a slight difference in perceived 
magnification between the channels as shown in Supplementary Figure 
4. A linear transformation can be applied to the central part of the field 
of view (we use the central 256 ×256 pixels from the 512 ×512 output 
of the detector) to correct for chromatic aberration, as defined by Eqs. 1a 
and 1b below [9]: 
Δx = F(x− xc)/Sx (1a)  

Δy = F(y− yc)
/

Sy (1b)  

where Δx,Δy is the shift in coordinates of a spot due to chromatic ab
erration, F is the shift factor which scales the whole transformation 
based on the wavelength difference (F = 1 for 640 nm → 488 nm and 
0.35 for 640 nm → 561 nm corrections), (x, y) are the coordinates of the 
spot, (xc, yc) are the coordinates of the origin of the transformation 
(where spots perfectly superimpose), and (Sx, Sy) are scale factors of the 
stretch and are equal to the distance from the origin of the trans
formation which results in a 1 pixel shift in the respective axis. Note that 
here we refer to the channels by their excitation wavelengths, whereas 
the chromatic shift correction factors were calculated from peak emis
sion wavelengths. 

2.4. Calculating fluorescence intensity time traces 

Fluorescence intensity time traces were calculated from the raw data 
without enhancement. The background was subtracted locally around 
the spot for each frame as shown in Supplementary Figure 5. The 
background subtraction ensures that if all the fluorophores in a fluo
rescent focus bleach, the mean intensity of the trace after that point will 
be zero. This is important as the neural network will only confidently 
assign stoichiometries where all the fluorophores have bleached. If one 
or more fluorophores don’t bleach within the recording time, the in
tensity will be above zero and the stoichiometry will be undecided. 

2.5. Neural network architecture 

The architecture of the convolutional recurrent neural network 
(CRNN) is shown in Fig. 1. The fluorescence intensity trace was 
convolved with a set of filters learned during training. This produces a 
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set of feature maps which were then further convolved deeper in the 
network by even larger sets of filters. The feature maps were then passed 
to a long-short-term-memory (LSTM) layer. This increases prediction 
accuracy as the LSTM can ignore photo-blinking by the presence of 
features such as an upwards step when the fluorophore switches back on 
followed or preceded by a photobleaching event of a similar magnitude 
[23]. The output of the LSTM was passed to a multilayer perceptron 
which classifies the trace as having zero, one, two, three, four, five or 
more, or an undefined number of steps based on the combinations of 
features found by the LSTM. 

A dropout layer was added between the LSTM and the dense layers to 
reduce overfitting [24,25]. During training, 50% of neurons in the 
dropout layer were ignored at random during forward propagation. This 
prevents the network from over-relying on specific weights which 
effectively regularizes the model. 

2.6. Network training 

CRNN models were implemented in TensorFlow 2.7 using the Keras 
API. Models were trained on a Gigabyte GeForce 1070 and took 
approximately 24 h to converge. To prevent overfitting, real-time vali
dation was computed on an unseen validation set during training. Model 
weights were only saved if the validation sparse categorical accuracy 
had improved from the previous best epoch. The model was optimised 
using Adam with a learning rate of 0.0001 and the sparse categorical 
cross entropy loss function. The loss and accuracy curves are shown in 
Supplementary figure 6. The validation accuracy is consistently higher 

than the training accuracy for two reasons: (1) dropout is only active in 
training and removed in validation; (2) training loss and accuracy are 
calculated from the average of all 12,000 mini-batch updates of each 
epoch whereas validation loss and accuracy are calculated at the end of 
each epoch when the weights are at the most optimized state thus far. 

The CRNN architecture was trained independently on three separate 
artificial datasets to create three models tailored to different fluo
rophores, namely Cyanine 5 (Cy5), monomeric Cherry (mCherry), and 
monomeric enhanced green fluorescent protein (mEGFP). Cy5-like 
traces were simulated with constant step heights ± 20% allowing for 
some variation, and mCherry / mEGFP – like traces were synthesized 
with intensities drawn from a cos [2] distribution [26]. Each training set 
was also synthesized over a range of signal-to-noise ratios to account for 
almost every case typically encountered with our experimental setup. 
Supplementary Figure 7 shows examples of synthesized Cy5 traces and 
signal-to-noise ratio distributions of the training sets for each type of 
fluorophore. Traces were synthesized by first generating an idealized 
trace with stochastic photobleaching where the probabilities of virtual 
fluorophores based on the number of photons absorbed. Noise was then 
superimposed on the ideal trace. Average signal to noise ratios (aSNRs) 
of the steps of a trace were calculated using Eq. 2 [23]: 

aSNR =

∑

k−1

i=1

2ui

σi+σi+1

k − 1
(2)  

where k is the number of plateaus (number of steps + 1), ui is the ab
solute difference between the mean of the ith plateau and the (i + 1)th 

Fig. 1. (A) Scheme showing data processing pipeline of the FluoroTensor package. Synthesized traces are used to train the CRNN model based on the properties of 
fluorophores in use. The full pipeline is then tested with synthesized single molecule movies. A projection of each channel is enhanced, fluorescent foci detected, 
colocalization between channels is mapped, and time intensity traces are calculated based on methods covered later in this section. Traces are then passed to the 
CRNN which predicts the number of photobleaching steps, and a moving average fitting tool takes this as an input and attempts to find the most likely time points 
where photobleaching occurs. This method has now been further improved, using a convolutional neural network to find the step positions. The results are then 
compiled into an excel spreadsheet. (B) Table of layers in CRNN along with the shapes of their respective inputs, outputs, and number of trainable parameters. (C) 
Schematic diagram of the layers of CRNN. 
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plateau, and σi is the standard deviation of the ith plateau. 

2.7. SM tracking 

Initially each frame was enhanced using a high pass filter. This was 
achieved by convolving the frame with a normalized Gaussian kernel 
(128 ×128, σ = 32, with padding) which acts as a low pass filter which 
was then subtracted from the original (see Supplementary Figure 8 for 
example). The signal-to-noise ratio of the spot in the raw image data was 
calculated as the background subtracted mean intensity of the spot 
masked at the full-width-half-maximum of its Gaussian fit divided by the 
standard deviation of the surrounding background noise (see Supple
mentary Figure 9). 

Molecules are detected on a framewise basis using the same detec
tion algorithm as previously described for colocalization experiments. In 
each frame, bright regions of the image that could be potential spots 
were isolated based on a threshold of intensity compared to the back
ground. The position of the bright region as defined by the intensity- 
weighted pixel positions was re-centred on an 11 × 11 grid and fitted 
with a Gaussian kernel / Gaussian fit as described earlier in Supple
mentary figure 3. The fitting criteria were more relaxed for tracking 
experiments owing to the lower signal to noise ratio of individual frames 
compared to averaged frames in colocalization experiments. Tracks are 
connected by a temporal nearest neighbour algorithm. A spot was 
deemed to be the same molecule from a previous frame if it was the 
nearest to the previous position and within a threshold distance to 
prevent tracks connecting to other molecules across the image. If a 
molecule photo-blinks and is not detected for several frames, the algo
rithm will continue tracking it when it comes back within a small 
(typically 1 frame) time window and if it was still within the threshold 
distance, but otherwise it was treated as the beginning of a new track. 
Thus, new objects detected in subsequent frames were initialised as new 
tracks. At the end, all tracks shorter than the minimum track length 
threshold were discarded. 

The diffusion coefficient for each track was calculated by taking the 
linear regression of the MSD plot and dividing the gradient by 4 for 2D 
diffusion. The method for calculating the MSD for different lag times 
(tau) is shown in Eq. 3a/b [27]. 

MSD(τ) = 1

/

(N −Δn)
∑N−Δn

n=1
(xn+Δn − xn)

2 +(yn+Δn − yn)
2 (3a)  

τ = tf Δn (3b)  

where MSD(τ) is the mean square displacement at lag time τ, Δn is a 
nonzero positive integer equal to the number of frames between the 
position of the spot at frame n and its position at frame n + Δn, N is the 
total number of frames, x and y are the coordinates of the spot in the 
respective frame, tf is the frame duration. The MSD was then plotted 
against τ for every possible Δn. 

2.8. Sample prep 

Proteins fused to mCherry and mEGFP were expressed in HEK293T 
cells. Nuclear extracts were prepared and samples were injected into 
chambers on the cover slip as described [5,10]. Images were acquired as 
described [9] with a minor change – the number of frames recorded was 
standardized to 300 in line with the neural network’s input domain. For 
the analysis of 2D diffusion, dye-conjugated oligonucleotides were 
conjugated to a hydrophobic moiety and injected onto a hydrophobic 
surface as described (Santana Vega et al., manuscript in preparation). 
Images were acquired by TIRF. 

3. Results 

The overall purposes of this work were to use deep learning to 

develop an improved method for detecting the numbers of bleaching 
steps in time courses of fluorescence and to embed it in an integrated 
software package that could facilitate and accelerate much of the data 
analysis associated with TIRF microscopy. Prior to the extraction of time 
course data, images need to be processed to reveal faint signals and, in 
the case of multicolour fluorescence experiments in which molecules or 
complexes might contain more than one fluorophore, colocalized signals 
need to be identified. These steps are followed by extraction of the in
tensity data for each spot detected and identification of the number of 
steps in which traces of each colour bleached (Fig. 1). 

3.1. Detection of fluorescent molecules or complexes 

Since protein fluorescence intensities can vary widely, FluoroTensor 
incorporates a set of operations designed to detect signals over a wide 
range. The detection of dim signals is important to avoid under- 
representation of weak emitters, which are likely to contain only a 
single fluorophore. Initial trials showed that a high-pass filter did not 
produce an image with a satisfactory background removal and sufficient 
contrast for weak emitters such as mCherry (Fig. 2). Instead, the signal/ 
noise ratio is improved by summing the frames for a user-specified 
proportion of the acquisition (usually the first 20%, which reduces the 
inclusion of frames acquired after bleaching of the spots). In addition, 
the maximum pixel values in this region are taken, to improve the vis
ibility of spots that bleach rapidly. The summation and maximum values 
are combined and normalised. This image is enhanced in either of two 
ways (as described in methods). 

Spots are detected using a pre-computed Gaussian kernel and 
calculation of the residual between the spot and the kernel. Those spots 
that satisfy this criterion are fitted by a Gaussian curve to calculate the 
coordinates of the spot with sub-pixel precision. This procedure involves 
less computation than the alternative of trying to fit all possible regions 
of the field of view to a Gaussian. Any remaining false positives are 
discarded during downstream analysis of the fluorescence trace due to 
the absence of photo-bleaching steps. 

The colocalization of spots in images acquired at different wave
lengths is often complicated by chromatic aberration. This arises from 
the different angles of refraction at those wavelengths. resulting in a 
difference in focal depth between the channels. This effect is generally 
counteracted either by the use of fiducial beads in the sample or by prior 
calibration of the system (Eqs. 1a and 1b) with beads or dual-labelled 
molecules. However, we observed that, when the stage was automati
cally moved to a new area on the slide, in some cases the autofocus 
would keep the field of view in focus but at a slightly different focal 
height, resulting in a change in chromatic aberration with slightly 
different parameters. This change could result in some spots not being 
identified as colocalized. To solve this, we incorporated an additional 
optional solution in which an optimizer is implemented directly into the 
program to solve the parameters to Eq. 1a/b for each field of view during 
automated analysis. The approach is to solve the parameters for 
maximum colocalization. However, the colocalization count is not a 
continuous function of the parameters and as such, unsuitable for 
optimization by commonly used solvers such as Simplex. The first step is 
to test an array of transformation origins and scale factors to find an 
approximate set of parameters which maximises the number of colo
calized spots via grid search. Next, a Simplex solver minimizes the dis
tances between colocalized spots, taking the crude parameters as an 
input and refining them. A minimum of 4 colocalized spots is required 
for this to work reliably and spots should be sparsely populated, espe
cially if the colocalization percentage is low, to discourage the solver 
from attempting to colocalize randomly proximal spots. 

3.2. Determination of stoichiometry by a convolutional neural network 

The architecture was designed to be efficient as well as accurate. The 
FluoroTensor platform enables users to quickly train their own models 
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from this architecture. The architecture is small, totalling only 220 K 
parameters, and yet it shows improved accuracy (Fig. 3) when compared 
with larger models [23]. Our models were trained independently on 3 
different datasets totalling 18 million synthetic traces. Each model took 
24–48 h to train on an NVIDIA GTX 1070 GPU using a modified Keras 
generator to load datasets of 240,000 traces sequentially during 
training. The use of synthetic traces was mandated by the need to know 
the number of steps in each trace and to ensure equal representation of 
traces with the different numbers of steps being classified. A plateau 
length restriction was placed on traces with very low signal to noise 
ratios (Supplementary Figure 10), such that if two bleaching steps were 
indistinguishable from a single step, the intermediate plateau was 
extended, and no other fluorophores were allowed to bleach in the 
simulation until the intermediate plateau becomes resolvable. Statisti
cally only a small proportion of the training data has these extended 
plateaus based on the SNR distribution. Of great importance to note is 
that these restrictions were only imposed on the training dataset to 
prevent the model from overpredicting steps. All synthetic testing data 
was simulated with stochastic bleaching, allowing for simultaneous 
bleaching events that would be present in real data unless explicitly 
stated otherwise. 

The network was tested using simulated data for organic fluo
rophores that lacked constraints and therefore included some simulta
neous bleaching events. These tests were done on sets of data with a 

Fig. 2. (A) A composite image obtained by taking the mean of the first 20% of all frames in the mCherry Channel and combining it with the maximum projection of 
those same frames. (B) The composite image enhanced using a high pass filter and showing the spots that were detected. (C) The composite image enhanced using the 
method detailed in Section 2.1 (Fig. 1) and the spots detected. Note how spot 9 kept in the image enhanced by the high-pass filter is rejected here owing to the higher 
contrast of our enhancement resolving a second weaker spot overlapping it. (D) A zoom of the start of the trace of spot 10 proving that the spot detected was a real 
single mCherry molecule and was not an artefact of the enhancement. (E) A single frame from a movie of Cy5-labelled RNA molecules. (F) A single frame of mCherry- 
labelled U1A proteins from the same experiment as (E), note the much lower signal to noise ratio and thus the need for a powerful enhancement technique. 
Comparing (A) to (F) we can see that a single time bin (100 ms) of Cy5 dyes has a much greater signal to noise ratio than a summed stack of 60 100 ms time bins of 
mCherry fluorescent proteins. (Note that while (A) and (E) have different colour maps they are both still perceptually uniform.). 

Fig. 3. A comparison of the FluoroTensor models with CLDNN and MLE for 
stochastic bleaching traces and traces with a minimum of 5 frames per plateau 
as described in Xu et al. (2019) for CLDNN. Comparisons were made between 
prediction accuracy of each model for datasets with a range of signal to noise 
ratios (more detail in Supplementary Figure 18). 
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range of signal/noise ratios and various mean fluorescence intensities 
(Supplementary Figure 11). The accuracies recorded increased with the 
signal/noise ratio, as expected, from 74% at a ratio of 1.105 to 98.1% at 
a ratio of 8.853. Accuracy will never reach 100% due to the inherent 
uncertainty of simultaneous photo-bleaching events regardless of the 
signal to noise ratio. To gain insights into the feature extractor part of 
the neural network, the 128-dimensional feature vectors (the outputs of 
the LSTM layer of the model) of a dataset of 20,000 traces were pro
cessed by t-distributed stochastic neighbour embedding (t-SNE) 
dimensionality reduction algorithm to produce a 2-dimensional map 
clustering the feature vectors by similarity (Supplementary Figure 12). 
Comparing the feature vector t-SNE plots with the t-SNE plots built from 
the traces themselves (Supplementary Figure 13) it is clear that the 
convolutional and LSTM layers of the network are working as intended, 
reducing the extremely high intra-class variance of the traces signifi
cantly into highly conserved feature vectors which can then be decoded 
by the multilayer-perceptron classifier. Crucially, the intra-class vari
ance is hugely reduced while the inter-class variance is increased, i.e., 
feature vectors are highly correlated between members of the same class 
and highly uncorrelated between members of different classes. 

The experimental setup and operating procedure described here 
have been optimised for recordings of 300 frames (time points in the 
traces) for each colour channel. Convolutional Neural networks have a 
fixed size input domain and thus any trace entering the model needs to 
be resampled to 300 frames to match the 300 neurons of the input layer. 
As shown in Supplementary Figure 14C, resampling a trace from 100 
frames to 300 frames using a linear interpolator introduces extra time 
points between plateaus. Once the number of interpolated points is on 
the order of the number of frames of the shortest plateaus, the neural 
network is unable to distinguish the interpolated frames from a true 
plateau and begins to overpredict the number of steps in the trace 
resulting in significantly reduced accuracy, as shown in Supplementary 
Figures 14A and 14B. Interestingly, when the bleaching half-life is suf
ficiently short such that a number of steps would be missed due to 
simultaneous bleaching events, the accuracy of the 200-frame dataset 
interpolated to 300 frames was slightly greater than the accuracy of the 
native 300-frame dataset. This effect can be attributed to overprediction 
caused by resampling the 200-frame that was compensating for the 
underprediction due to simultaneous bleaching events. The inverse 
linear correlation between the probability of a fluorophore bleaching 
per frame and the accuracy of the neural network is shown in Supple
mentary Figure 14D. Almost all errors were due to underpredictions 
where the network is unable to distinguish bleaching steps with more 
than one bleaching event. For this reason, it would be advisable to 
choose a frame rate and laser power that maximises the mean time in
terval between bleaching events while also ensuring that bleaching is 
likely to be complete for all likely numbers of bleaching steps by the end 
of the 300 frames. 

3.3. Step position detection and plateau fitting 

Once the numbers of steps have been determined by the step 
detection neural network, the output is used to fit the plateaus. The time 
point at which a bleaching event occurs was originally found by a 
moving average algorithm which scans across the trains and takes the 
top k largest change points in the intensity as the positions of bleaching 
where k is the number of steps. This was replaced in favour of a much 
more accurate system using machine learning. A convolutional neural 
network approach was used for this. The architecture is shown in Sup
plementary Figure 15. The model takes the trace as an input and has an 
output neuron for each time point. 

The network was trained on a rectangularly distributed bleaching 
step distribution within the time domain of the trace to avoid class 
imbalance. The target vector for the model is multi-hot encoded: an 
array with the same shape as the trace which is entirely zeros except for 
the exact positions of steps where the component of that index of the 

vector is 1. The model was trained using the ADAM optimizer using the 
cosine similarity loss function. This loss function is excellent for multi- 
hot encoded vectors since it minimizes the angle between the output 
vector of the model which can be considered a certain direction in 300- 
dimensional space, and the target vector which can also be considered a 
direction in the same space. Thus, by aligning the vectors during training 
the model learns to find the positions of steps since the index of the 
output neurons correlates to the position of the step in the input trace 
(see Supplementary Figure 16). The peaks are then top k sampled where 
k is twice the step count. These peaks are then checked since sometimes 
the output vector has consecutive activations resulting in a wider peak. 
If this is the case top k sampling will choose consecutive peaks over a 
separate peak with a lower intensity and fit the step in the wrong po
sition. Once consecutive activations are removed, the resulting separate 
peaks are top k sampled where k is the number of steps. The means of the 
plateaus between these bounds are taken to fit the trace. Over 90% of 
steps were fitted within a single frame (time point) of the ground truth 
frame where the bleaching event occurred (see Supplementary figure 
17). 

3.4. Comparisons of performance 

To compare the performance of Step detection in FluoroTensor with 
a previous neural network model (CLDNN [23]) and with a statistical 
method [9,28], time courses were simulated for complexes containing 
0 to 4 protein-like fluorophores across a range of mean signal/noise 
ratios (mean bleaching half-life was 40.5 frames, see Supplementary 
Figures 18 and 19). The percentage of complexes predicted correctly by 
each of these methods is shown in Fig. 3. In addition to simulations of 
stochastic bleaching, a second set of simulations was made with a 
minimum of 5 frames between each bleaching step. The results show 
that FluoroTensor was significantly more accurate for each dataset than 
the other two methods. Interestingly, in both data sets the CLDNN model 
performed better than the statistical method, based on maximum like
lihood estimation [29], at low signal/noise ratios whereas the MLE 
method was superior at higher signal/noise ratios. These simulated data 
were then used to test the full analysis pipeline. 

A further comparison was done to analyse whether the abilities of the 
methods to determine the distributions of complexes with various 
numbers of fluorophores would indicate the reasons behind the differ
ences in performance. Three SM TIFF stacks were simulated with virtual 
complexes formed with a number of dye-like fluorophores drawn from 
binomial distributions based on the numbers of molecules in a complex 
(2, 3 and 4) and the proportion of these that were labelled (p = 0.5, 0.4 
and 0.6 respectively; Fig. 4A). Complexes were modelled as Gaussian 
functions with sigma = 1.3 and an amplitude equal to the sum of the 
intensity of the virtual emitters. The fluorophores were allowed to 
bleach stochastically. Gaussian noise was added to simulate dark cur
rent, a non-uniform autofluorescence was added to each frame and shot 
noise was modelled with a gamma distribution to account for EMCCD 
gain. 

The three stacks were analysed automatically by FluoroTensor to 
identify the spots and the stoichiometries of the simulated complexes. 
The distributions observed matched the expected binomial distributions 
(Fig. 4B). These distributions were then used to predict the numbers of 
molecules in the complexes, producing answers of 2 (with a confidence 
of 78%), 3 (with a confidence of 83%), and 4 (with a confidence of 80%). 
The analysis was repeated on the same set of extracted traces using the 
computation neural network [23], with the results shown in Fig. 4C. 
This underestimated the complexes with three or four steps, and the 
number two was overestimated, possibly because close bleaching steps 
were not assigned to distinct molecules. The TIFF stacks were also 
analysed using a MATLAB suite of programs that enabled spot detection 
and assigned stoichiometries using an automated step detection algo
rithm based on maximum likelihood estimation (MLE; Fig. 4D) [9,28]. 
In contrast to CLDNN, this analysis tended to overestimate the 

M.F.K. Wills et al.                                                                                                                                                                                                                              



Computational and Structural Biotechnology Journal 23 (2024) 918–928

924

abundance of complexes with higher stoichiometries, possibly because 
of the signal/noise ratio (distribution shown in Supplementary Figure 
20). 

Apart from the accuracy, there are two further advantages of Fluo
roTensor compared with statistical methods: the speed of the analysis 
and the ability to correct automatically for chromatic aberration. An 

example illustrating these advantages is shown in Supplementary Figure 
21A. A dataset from TIRF microscopy of a sample of nuclear extract 
containing regulatory splicing complexes with fluorescently labelled 
components of interest and fluorescently labelled RNA was analysed 
both with FluoroTensor (Supplementary Figure 21A) and the MLE-based 
method (Supplementary Figure 21B). The FluoroTensor automated run 

Fig. 4. (A) Three different binomial distributions. Consider the number of trials, N, as being the number of bound proteins in a complex and the probability of 
success, p, the ratio of exogenous FP tagged protein to endogenous untagged protein. The binomial distribution represents the distribution of photobleaching steps of 
fluorescent foci of complexes with these stoichiometries and labelling proportions. (B) Simulated data with these distributions was analysed automatically by 
FluoroTensor including locating the foci in the SM movies, calculating traces and using the neural network models to predict the number of photobleaching steps. (C) 
The same analysis on the same traces as (B) but using the CLDNN model to predict steps. (D) The distributions of steps found by a maximum likelihood estimator in 
our previous SM analysis software, Auswerter, developed in MATLAB (Jobbins et al., 2022). 
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was complete within 45 min of elapsed time on the dataset. No cali
bration file was used for chromatic aberration. Instead, the built-in 
optimizer detailed in Section 3.1 solved the correction parameters for 
chromatic aberration and built up the dataset of colocalized traces. This 
process was entirely unsupervised apart from the final step where the 
program was prompted to detect the steps using the neural networks and 
then export the data to a preformatted excel template. In the MATLAB 
program, the analysis needed to be supervised with manual corrections 
to the spots detected and the process took over 16 h. The software also 
relied on a calibration file which had pre-solved parameters from a set of 
calibration movies meaning that it does not accommodate any variations 
in the chromatic aberration from one file to the next due to subtle 
changes in focus. Errors in steps detected by maximum likelihood 
compared to the neural network model are shown for some traces in 
Supplementary Figure 22. These errors are thought to be made because 
MLE requires a threshold step size. Since these step sizes are highly 
variable in FP-like traces some weaker steps will be missed and brighter 
ones overcounted due to the necessity of setting a low enough threshold 
as not to miss the weaker emitters. Thus, we propose MLE could be a 
viable alternative for organic dyes with constant step sizes. 

3.5. Localization accuracy of 2D tracking algorithm 

The spots representing macromolecular complexes are not always 
stationary. TIRF microscopy is used to track components undergoing 
lateral diffusion in membranes[ [30–32] or other surfaces onto which 
complexes are adsorbed without covalent tethering. In such cases, esti
mates can be made of the diffusion coefficients of the complexes, and 
they may reveal heterogeneity in the surface or the interactions of the 
fluorescent component. However, the accuracy with which the position 
of a spot can be determined in a single frame is critical. In FluoroTensor, 

the background in each frame is removed with a high pass filter, and the 
location of each spot is determined as described above, beginning with a 
pre-computed Gaussian kernel. The analysis of simulated spots (see 
Materials and Methods) showed, as expected, that the mislocalization 
error shows a strong dependence on the signal to noise ratio of the spot 
in each frame (Supplementary Figure 23, 24, and 25). With a mean SNR 
of less than ~2.9, some spots almost disappeared into the noise in some 
frames, leading to outliers with very high mislocalization. Measured 
spots from real single molecule data, collected from Alexa-647 ® tagged 
oligonucleotides diffusing on a surface typically had a mean SNR of 5 or 
higher, which according to our findings would have a mean mis
localization of ~20 nm on our SM TIRF microscope, with 99.7% of 
measured positions being localized within 50 nm within a time bin of 
100 ms. Tracking is done by connecting each spot in a frame with the 
spot in the closest location in the succeeding frame (Fig. 5). A maximum 
jump distance per frame is set based on observed motion of the moving 
particles to ensure valid connections of a particle one frame to the next. 

3.6. Estimation of error in MSD fit and diffusion histograms 

Mean square displacement is calculated according to Eq. 3a for each 
track found by the program. To ensure accurate distributions of diffusion 
coefficients of molecules in the sample to a degree where heterogeneity 
in motion can be distinguished, the quality of the MSD fit must be 
assessed over its range and maximised. As Δn→N (Eq. 3a), the mean 
displacement no longer represents the RMS Brownian diffusion distance 
of a model random walk of indefinite length. This results in severe de
viation of MSD vs τ from a linear fit, especially when the end-to-end 
distance of the track is far from the expected RMS separation (Fig. 5; 
Supplementary Figure 26B). For this reason, only the initial portion of 
the beginning of the MSD plot is fitted. The proportion of the MSD plot to 

Fig. 5. The data analysis pipeline for single molecule tracking in FluoroTensor. First, images are enhanced via high-pass filtering. Then, the movie is normalized to 
the brightest pixel throughout to a range of 0–255. Molecules are detected frame by frame using the same algorithm as for colocalization analysis (see Supplementary 
Figure 3). Spots are connected to their nearest neighbours in consecutive frames with constraints to ensure tracks are topologically linear as opposed to branching. 
MSDs are calculated track by track (see Supplementary Figure 26) and diffusion coefficients are generated and their distributions plotted and fitted with a Gaussian 
mixture model. Quality control is performed by rejecting tracks with high variance in the MSD fit which improves resolution of distributions of systems of diffusing 
molecules with multiple diffusion rates. 
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fit is decided on a track-by-track basis by calculating a linear regression 
for proportions of the data points in the MSD plot. The fitted region of 
the plot ends where the derivative of the coefficient of determination 
(R2) becomes negative. The final MSD fit is taken as the linear regression 
of all points of the MSD plot before this point. The standard deviation of 
the diffusion coefficients for all fitting percentages up until the point at 
which the derivative of R2 becomes negative is calculated to be used as a 
rough estimate of the error in the diffusion coefficient calculated by the 
final MSD fit (Supplementary Figure 26B/C). 

To resolve the diffusion coefficients of a heterogeneous mixture, all 
tracks where the standard deviation as a percentage of the diffusion 
coefficient was greater than a specified value are rejected. This strategy 
results in histograms where the distribution of diffusion coefficients in a 
heterogeneous mixture of diffusing molecules with two or more distinct 
diffusivities is more easily resolved in a Gaussian mixture model than the 
unfiltered distribution. Fig. 6 shows the effect of filtering by rejecting 
tracks with various estimated fitting errors. The most accurate fit was 
obtained with the most stringently selected data, albeit at the expense of 
a reduced number of data points (Fig. 6; Supplementary Figure 26, D-F). 
This technique will be of particular use when tracks are short due to 
transient binding to a surface or short bleaching times of the 
fluorophores. 

3.7. Fluorescence resonance energy transfer 

FRET involving two components is detected using the same Gaussian 
mixture model that was used above for resolving the diffusion co
efficients in a heterogeneous mixture. This detects FRET states lasting 
for four or more frames, and, assuming a first order process, produces 
rate constants for the two steps. An example is shown in Supplementary 

Figure 27. 

4. Discussion 

We have presented a versatile new software package written in py
thon for single molecule total internal reflection fluorescence (SM TIRF) 
microscopy. It was written for data collected by EMCCD cameras, and 
we have not yet tested its performance with CMOS detectors. The Flu
oroTensor software package will be of particular use in two main areas. 
Primarily this software was designed to provide an automated analysis 
pipeline for single molecule multicolour colocalization microscopy with 
automatic correction for chromatic aberration, high contrast enhance
ment capable of resolving extremely weak signals from fluorescent 
proteins and the ability to detect photobleaching events in consecutive 
frames, i.e., without the requirement for identifying a statistical plateau. 
Within FluoroTensor, we present a neural network architecture for 
determining the number of photobleaching steps in the fluorescence 
traces extracted in the aforementioned automated analysis of SM data 
with 96% fewer parameters than the previous state of the art model for 
this purpose [23] and with improved accuracy. The model is much more 
efficient to train, and our pre-trained versions are not limited to a 
minimum number of frames per plateau. A primary aim for this project 
was creating a ‘plug and play’ platform for these neural networks such 
that end users could train their own models based on our architecture on 
custom datasets, or even develop the architecture further with a rela
tively simple python script. More information about integrating these 
models into the program is given in the User Guide. Alternatively, users 
may finetune one of our pretrained models with their data. In addition, 
the SM tracking extension is well suited for tracking SM diffusion in 
noisy conditions where particles of interest are transient or photo-bleach 

Fig. 6. A distribution of diffusion coefficients for a system with molecules diffusing at 4 distinct diffusivities. The standard deviation of the MSD plot gradients during 
fitting is expressed as a percentage of the diffusion coefficient of each track. The track is rejected from the distribution of diffusion coefficients if the percentage 
standard deviation is greater than the respective thresholds shown (200%, 20%, 5%, and 4% respectively. Setting the threshold lower rejects a greater number of 
tracks. Rejecting tracks with higher variance in the MSD fit deconvolves the distribution and allows for accurate fitting of the components via Gaussian mixture 
model. The ground truth diffusivities simulated were 0.010, 0.035, 0.070 and 0.120 µm2 / s. 
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rapidly. The tracking add-in which can be launched from within the 
main GUI also allows for automated chaining of raw data which is 
analysed sequentially and saved as a document file that can be reloaded 
and exported to Excel. We believe the tracking add-in is of most use in 
the analysis of heterogenous mixtures of molecules with a range of 
diffusivities as our MSD fitting and filtering algorithm cleans up ‘messy’ 

distributions and allows fitting with a Gaussian mixture model within 
the GUI allowing for fast and straightforward preliminary analysis. 
Finally, a basic FRET add-in extends the usefulness of the package for a 
very common application of single molecule TIRF microscopy. 

The package contains two different methods for enhancing the image 
to allow detection of weak spots. The wavelet transform is computed 
more rapidly, but the convolution method appears to be more reliable 
with faint spots in a noisy background, such as might be seen using 
mCherry as a fluorophore. The choice between these two is left for the 
user. The automated colocalization procedure to compensate for chro
matic aberration is a major practical advantage. However, if colocali
zation is very low, below the threshold of four spots, then a calibration 
file will have to be created and used. The display shows the trans
formation vectors across the screen, which is helpful in reassuring the 
user that any two spots in different colours are properly related for 
colocalization. 

The improvement in accuracy of step detection was surprisingly 
large, reaching 20–30% higher than the other methods tested at a 
signal/noise ratio of 3.5 (Fig. 3). Some of the remaining error is the 
result of close or simultaneous bleaching events that could not be 
resolved, even though the performance is better than that of a trained 
observer. This is consistent with the tendency to under-count the num
ber of steps at low signal/noise ratios and the decrease in accuracy as the 
number of steps increases and the likelihood of events in close proximity 
increases (Supplementary Figure 28). The results also suggest that any 
measurement of stoichiometries is likely to be unreliable for three steps 
or more if the signal/noise ratio is lower than 2. 

The measurement of diffusion rates for single molecules presented 
several difficulties. First, the localization has to be accurate. Again, a 
signal/noise ratio of > 2.5 is helpful. Stage drift needs to be measured 
and, if sufficiently large, will need to be taken into account. Wobbles or 
perturbations in focal height should also be avoided. Also of importance 
is the tuning of the spot-fitting parameters of the program before 
beginning tracking to ensure that coalescence cannot occur. If two spots 
coalesce and then separate, the program will not be able to distinguish 
which particle was which. Setting the maximum jump distance per 
frame based on the observed motion of the moving particles is also 
important, especially in fields of view with a high spot density, to ensure 
valid connections of a particle from one frame to the next. If the value is 
set too low, the particle will not be tracked as its new position will be 
treated as a separate object; too high, and the path may jump to a 
different object. 

5. User interface 

All analysis in FluoroTensor is done via a graphical user interface. 
The User Guide (see code availability section) covers all of Fluo
roTensor’s functions and how to reach them from the interface in detail. 
When the executable is launched, a debug window will appear while 
libraries and assets are loaded. After a short time, the main window of 
the interface appears. This is shown in Supplementary Figure 29. While 
the program is running, the console window stays open in the back
ground and may display information relating to debugging while func
tions are executing. Errors that occur during execution will be displayed 
there also. The main interface is the one from which trace analysis and 
step detection is carried out. 

To analyse raw single-molecules, an analysis window can be 
launched from the main interface. This interface facilitates image 
enhancement, fluorescent signal (spot) detection, colocalization map
ping with chromatic aberration correction and trace extraction after 

which the data can be imported into the main interface for downstream 
analysis. The raw data analysis window is shown in Supplementary 
Figure 30. 

The interface for single-molecule tracking (referred to as the 
TrackXpress add-in by the program and in the User Guide) can also be 
launched from the main interface (shown in Supplementary Figure 31). 
All tracking-related functions can be accessed from this interface 
including image analysis, MSD fitting, diffusivity distribution fitting and 
data exporting. Diffusivity fitting is done in a separate window (shown 
in Supplementary figure 32) which can be launched from within the 
tracking interface. 

6. Conclusion 

We conclude that FluoroTensor is a versatile and useful tool for the 
analysis of single molecules by wide-field microscopy: its performance 
in measuring stoichiometry is the best currently available, and in
novations such as the automated colocalization and the method for 
establishing the most reliable measurements of diffusion for each 
molecule improve the convenience and reliability of methods for ana
lysing the behaviour of single molecules. 

Recommended system requirements 

OS:Windows 10 64 bit. 
CPU:8th GEN intel i5–8500 / AMD Ryzen 5 3600XT or newer. 
RAM:16 GB DDR4 / 32 GB DDR4 (recommended for large datasets.). 
GPU:(not required) / NVIDIA GTX 1070 (minimum for model 

training of datasets larger than 1 M traces.). 
Storage:Minimum 1TB permanent storage for single molecule data 

(recommend SSD. Use permanent storage for fastest data load times 
instead of networked storage where possible.). 
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